Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Korean Journal of Radiology ; : 610-617, 2012.
Article in English | WPRIM | ID: wpr-228972

ABSTRACT

OBJECTIVE: To investigate radiation doses in pediatric chest radiography in a national survey and to analyze the factors that affect radiation doses. MATERIALS AND METHODS: The study was based on the results of 149 chest radiography machines in 135 hospitals nationwide. For each machine, a chest radiograph was obtained by using a phantom representing a 5-year-old child (ATOM(R) dosimetry phantom, model 705-D, CIRS, Norfolk, VA, USA) with each hospital's own protocol. Five glass dosimeters (M-GD352M, Asahi Techno Glass Corporation, Shizuoka, Japan) were horizontally installed at the center of the phantom to measure the dose. Other factors including machine's radiography system, presence of dedicated pediatric radiography machine, presence of an attending pediatric radiologist, and the use of automatic exposure control (AEC) were also evaluated. RESULTS: The average protocol for pediatric chest radiography examination in Korea was 94.9 peak kilovoltage and 4.30 milliampere second. The mean entrance surface dose (ESD) during a single examination was 140.4 microgray (microGy). The third quartile, median, minimum and maximum value of ESD were 160.8 microGy, 93.4 microGy, 18.8 microGy, and 2334.6 microGy, respectively. There was no significant dose difference between digital and non-digital radiography systems. The use of AEC significantly reduced radiation doses of pediatric chest radiographs (p < 0.001). CONCLUSION: Our nationwide survey shows that the third quartile, median, and mean ESD for pediatric chest radiograph is 160.8 microGy, 93.4 microGy, and 140.4 microGy, respectively. No significant dose difference is noticed between digital and non-digital radiography systems, and the use of AEC helps significantly reduce radiation doses.


Subject(s)
Child, Preschool , Humans , Phantoms, Imaging , Radiation Dosage , Radiography, Thoracic , Republic of Korea , Risk Factors
2.
Korean Journal of Medical Physics ; : 16-21, 2010.
Article in Korean | WPRIM | ID: wpr-87908

ABSTRACT

To acquire good image quality and to minimize unnecessary radiation dose to patients, it is important to ensure that the radiopharmaceutical administered is accurately measured. Quality control of radionuclide calibrators should be performed to achieve these goals. The purpose of this study is to support the quality control of radionuclide calibrators in nuclear medicine centers and to investigate the level of measurement accuracy of the radionuclide calibrators. 58 radionuclide calibrators from 45 nuclear medicine centers, 74 radionuclide calibrators from 58 nuclear medicine centers, and 60 radionuclide calibrators from 45 nuclear medicine centers were tested with I-131, Tc-99m and I-123, respectively. The results showed that 81% of calibrators for I-131, 61% of calibrators for Tc-99m and 67% of calibrators for I-123 were within +/-5%. 17% of calibrators for I-131, 20% of calibrators for Tc-99m and 15% of calibrators for I-123 had a deviation in the range 5%10%. Follow-up measurements were performed on the calibrators whose error exceeded the +/-10% limit. As a result, some of the calibrator showed an improvement and their deviation decreased below the +/-10% limit. The results have shown that such comparisons are necessary to improve the accuracy of the measurement and to identify malfunctioning radionuclide calibrators.


Subject(s)
Humans , Dietary Sucrose , Follow-Up Studies , Nuclear Medicine , Quality Control , Radioactivity
3.
Korean Journal of Medical Physics ; : 223-231, 2010.
Article in Korean | WPRIM | ID: wpr-55608

ABSTRACT

We have taken surveys about total 72 departments of radiation oncology which is performing the treatment with linear accelerator and brachytherapy unit in Korea. The survey was included the research about the linear accelerator, brachytherapy, Also, we surveyed the various performance (QA period, manpower, time) of quality control for understanding of efficiency. The survey results show that the QA test of daily and weekly are almost same comparing to USA and Europe but the QA performance of monthly and yearly in Korea are 15.5 which is less than USA and Europe recommended QA item number of 17 to 21. The manpower and QA time in Korea also lower than 50% of USA and Europe recommended because the manpower and QA time limitation in Korea. It will be expected that the manual of quality management in each clinic could be appropriately established when combining the present results with previously published AAPM TG-40 and other protocols.


Subject(s)
Brachytherapy , Europe , Korea , Particle Accelerators , Quality Control , Radiation Oncology
4.
Korean Journal of Medical Physics ; : 120-125, 2010.
Article in Korean | WPRIM | ID: wpr-30096

ABSTRACT

For the measurements of an absorbed dose using the standard dosimetry based on an absorbed dose to water the variety of factors, whether big, small, or tiny, may influence the accuracy of dosimetry. The beam quality correction factor kappa(Q, Q(0))of an ionization chamber might also be one of them. The cylindrical type of ionization chamber, the PTW30013 chamber, was chosen for this work and 9 chambers of the same type were collected from several institutes where the chamber types are used for the reference dosimetry. They were calibrated from the domestic Secondary Standard Dosimetry Laboratory with the same electrometer and cable. These calibrated chambers were used to measure absorbed doses to water in the reference condition for the photon beam of 6 MV and 10 MV and the electron beam of 12 MeV from Siemens ONCOR. The biggest difference among chambers amounts to 2.4% for the 6 MV photon beam, 0.8% for the 10 MV photon beam, and 2.4% for the 12 MeV electron beam. The big deviation in the photon of 6 MV demonstrates that if there had been no problems with the process of measurements application of the same kappa(Q, Q(0)) to the chambers used in this study might have influenced the deviation in the photon 6 MV and that how important an external audit is.


Subject(s)
Academies and Institutes , Electrons , Water
5.
Korean Journal of Medical Physics ; : 253-259, 2009.
Article in Korean | WPRIM | ID: wpr-227387

ABSTRACT

We have developed standards based on international criterions for the quality control of dose tested by the measurement institutions of individual exposure doses through improving the reliability of data on the exposure dose of individuals working in radioactive environment and securing the accuracy and reliability of individual dose measurements. Laws related to radiation dose applied to domestic institutions refer to ANSI N13.11?1993, but currently , in U.S. and some other countries the measurement of radiation doses is based on ANSI N13.11?2001 that reduced test categories and tightened the standards. We made efforts to simplify the standards and to reduce the number of dosimeters required in experiment, and avoided preventing or hindering the use of future technologies not approved under the current law such as glass dosimeter and optical stimulation dosimeter. The Quality Management Manual of Radiation Dosimetry Service, Assessment Manual of Radiation Dosimetry Service Accreditation Program, and the Personnel Dosimetry Performance-Criteria for Testing are documents applicable in supervising laboratories.


Subject(s)
Accreditation , Glass , Jurisprudence , Quality Control , Radiometry
6.
Korean Journal of Medical Physics ; : 317-323, 2009.
Article in Korean | WPRIM | ID: wpr-227380

ABSTRACT

The standard dosimetry systems based on an absorbed dose to water recommend to use a planeparallel chamber for the calibration of such a low-megavoltage electron beam as a nominal energy of 6 MeV. For this energy ranges of an electron beam a cylindrical chamber should not be used for the routinely regular beam calibration, but the feasibility of the temporary use of a cylindrical chamber was studied to give temporary solutions for special situations users meet. The PTW30013 chambers and the electron beam quality of R(50)=2.25 g/cm2 were selected for this study. 10 PTW30013 chambers, a cylindrical type of chamber, were calibrated in KFDA, the secondary standards dosimetry laboratories, and given the absorbed dose-to-water calibration factors, respectively. A "temporary" kappa(Q,Q0) for each chamber were calculated using the absorbed dose determined by a cross-calibrated planeparallel chamber, with the result of an average 0.9352 for 10 chambers. This value for PTW30013 chamber was used to determine an absorbed dose to water at the reference depth. The absorbed doses determined by PTW30013 chambers were in an agreement within 2% with that by ROOS chamber. In a certain situation where a cylindrical chamber be used instead of a planeparellel chamber, the value of 0.9352 might be useful to determine an absorbed dose to water in the same beam quality of electron beam as this study.


Subject(s)
Calibration , Electrons , Water
7.
Korean Journal of Medical Physics ; : 276-284, 2008.
Article in Korean | WPRIM | ID: wpr-93130

ABSTRACT

A computed tomography (CT) is a powerful system for the effectively fast and accurate diagnosis. The CT system, therefore, has used substantially and developed for improving the performance over the past decade, resulting in growing concerns over the radiation dose from the CT. Advanced CT techniques, such as a multidetector row CT scanner and dual energy or dual source CT, have led to new clinical applications that could result in further increases of radiation does for both patients and workers. The objective of this study was to review the international guidelines of the shielding requirements for a CT facility required for a new installation or when modifying an existing one. We used Google Search Engine to search the following keywords: computed tomography, CT regulation or shield or protection, dual energy or dual source CT, multidetector CT, CT radiation protection, and regulatory or legislation or regulation CT. In addition, we searched some special websites, that were provided for sources of radiation protection, shielding, and regulation, RSNA, AAPM, FDA, NIH, RCR, ICRP, IRPA, ICRP, IAEA, WHO (See in Table 1 for full explanations of the abbreviations). We finally summarized results of the investigated materials for each country. The shielding requirement of the CT room design was very well documented in the countries of Canada, United States of America, and United Kingdom. The wall thickness of the CT room could be obtained by the iso-exposure contour or the point source method. Most of documents provided by international organizations were explained in importance of radiation reduction in patients and workers. However, there were no directly-related documents of shielding and patient exposure dose for the dual energy CT system. Based international guidelines, the guideline of the CT room shielding and radiation reduction in patients and workers should be specified for all kinds of CT systems, included in the dual energy CT. We proposed some possible strategies in this paper.


Subject(s)
Humans , Americas , Canada , United Kingdom , Radiation Protection , Search Engine , United States
SELECTION OF CITATIONS
SEARCH DETAIL